

	

Light

	

Dark

	 with

	Advertise with us

	About

	Contact us

	
	
	
	
	
	

	

Home

	Blog
	

Articles

	

Tops

	

Explore by categories

	

Free Online Developer Tools

	

Inquiries

	

About

	

Advertise with us

	

Contact us

	

Legal

	

Privacy Policy

	

Comment Policy

	

	

Home

	Blog
	

Articles

	

Tops

	

Explore by categories

	

Free Online Developer Tools

	

Inquiries

	

About

	

Advertise with us

	

Contact us

	

Legal

	

Privacy Policy

	

Comment Policy

Laravel

How to merge multiple PDFs in Laravel

Carlos Delgado

	September 27, 2017
	
 42.5K views

	
	

Learn how to merge (join or combine) multiple PDFs into a single one in Laravel.

Willing to send all drawings, report, information about different departments to your boss, but they're all different PDFs that contain related information? Many users would just simply merge the PDFs and that's it. Merging files into a common PDF is extremely useful and necessary nowadays, so if you offer some kind of administrative app for some enterprise, adding such feature to your system may be useful so they won't need to install an external program or do it online using a third party service.

In this article, we'll show you how to merge multiple PDFs into a single one using the PDFMerger library.

1. Install pdfmerger

PDFMerger relies on the (installed automatically as dependencies) fpdf and fpdi classes by Setasign. There are other versions of the original library, ported into PHP5 as the original library was hosted in codeplex, however they don't have a minimum stability level (they work, but not with composer). The library fork that works with composer is the one created by @rguedes, as for Laravel, any dependency that you want to use requires a minimum stability level (not dev-master). To proceed with the installation of the package in your Laravel project, open a terminal, switch to the directory of your project and install the library using composer:

composer require rguedes/pdfmerger

After the installation you will be able to use the PDFMerger class and its methods. For more information about the fork of this library, visit the repository at Github here.

2. Using the library

The usage of the library is very simple and straightforward, you create an instance of the PDF merger. This class allows you to merge many files as you want using the addPDF method and finally generate the merged result using the merge method. You can choose which pages of the PDFs should be added into the final one, decide how and where the final PDF will be generated as well.

Specifying which pages to merge

The PDFMerger class allow you to merge many PDFs as you want and need using the addPDF method, you only need to provide the path as first argument and indicate which pages of the file should be merged into the final file using the second argument that expects a string. For example, you can merge all the pages of a PDF:

$pdf = new PDFMerger();

// Add all the pages of the PDF to merge
$pdf->addPDF("somePdfToMerge.pdf", 'all');

Specify specifically which pages you want by providing its number separed by a comma:

$pdf = new PDFMerger();

// Add only the pages 1, 3 and 5
$pdf->addPDF("somePdfToMerge.pdf", '1, 3, 5');

Or using a range, for example from the page 5 to the 10:

$pdf = new PDFMerger();

// Add only the pages from 5 to 10
$pdf->addPDF("somePdfToMerge.pdf", '5-10');

Merging model

Using the merge method, you will generate a PDF that contains the added files (the specified pages of every PDF). This file can be either stored or returned as response according to your needs. The method to process the PDF needs to be provided as first argument of the method merge, possible values for this argument are: browser, download, string or file. As second argument, the path where the PDF will be saved (if using file as method) or the name of the PDF that will be used to return it (with browser or download):

Generate direct download

If you don't need to save the PDF anywhere but just to generate it and return it as response, you can force the direct download of the generated PDF using the download identifier:

<?php

namespace App\Http\Controllers;

use Illuminate\Http\Request;

// Require PDF class of the library
use PDFMerger;

class DefaultController extends Controller
{
 /**
 * Index route
 *
 * @return Response
 */
 public function index()
 {
 // Absolute path of the PDFs to merge
 // In this example we have them inside the /public folder
 // of the project
 $pdfFile1Path = public_path() . '/file1.pdf';
 $pdfFile2Path = public_path() . '/file2.pdf';
 $pdfFile3Path = public_path() . '/file3.pdf';

 // Create an instance of PDFMerger
 $pdf = new PDFMerger();

 // Add 2 PDFs to the final PDF
 $pdf->addPDF($pdfFile1Path, 'all');
 $pdf->addPDF($pdfFile3Path, '1, 2, 3');

 // Generate download of "mergedpdf.pdf"
 $pdf->merge('download', "mergedpdf.pdf");
 }
}

Saving into a file

You can store the merged result into a file in your server:

<?php

namespace App\Http\Controllers;

use Illuminate\Http\Request;

// Require PDF class of the library
use PDFMerger;

class DefaultController extends Controller
{
 /**
 * Index route
 *
 * @return Response
 */
 public function index()
 {
 // Absolute path of the PDFs to merge
 // In this example we have them inside the /public folder
 // of the project
 $pdfFile1Path = public_path() . '/file1.pdf';
 $pdfFile2Path = public_path() . '/file2.pdf';
 $pdfFile3Path = public_path() . '/file3.pdf';

 // Create an instance of PDFMerger
 $pdf = new PDFMerger();

 // Add 2 PDFs to the final PDF
 $pdf->addPDF($pdfFile1Path, 'all');
 $pdf->addPDF($pdfFile2Path, 'all');

 // Merge the files into a file in some directory
 $pathForTheMergedPdf = public_path() . "/result.pdf";

 // Merge PDFs into a file
 $pdf->merge('file', $pathForTheMergedPdf);

 // Do something else here, as return
 // a response from the controller ...
 }
}

Retrieve binary content of result pdf

In case you need to retrieve the content of the generated file (binary data) without saving it anywhere, you can use the string output method to retrieve the content as a variable. In this case, we'll return the binary content as a response with the PDF headers (to view in the browser). You can as well, use the browser type if you want:

<?php

namespace App\Http\Controllers;

use Illuminate\Http\Request;

// Require PDF class of the library
use PDFMerger;

class DefaultController extends Controller
{
 /**
 * Index route
 *
 * @return Response
 */
 public function index()
 {
 // Absolute path of the PDFs to merge
 // In this example we have them inside the /public folder
 // of the project
 $pdfFile1Path = public_path() . '/file1.pdf';
 $pdfFile2Path = public_path() . '/file2.pdf';
 $pdfFile3Path = public_path() . '/file3.pdf';

 // Create an instance of PDFMerger
 $pdf = new PDFMerger();

 // Add 2 PDFs to the final PDF
 $pdf->addPDF($pdfFile1Path, 'all');
 $pdf->addPDF($pdfFile2Path, 'all');

 // Merge the files and retrieve its PDF binary content
 $binaryContent = $pdf->merge('string', "mergedpdf.pdf");

 // Return binary content as response
 return response($binaryContent)
 ->header('Content-type' , 'application/pdf')
 ;
 }
}

Happy coding !

laravel
pdf merge
pdf handle
pdf laravel
pdf join
laravel pdf join

 Share this article

	
	
	
	
	

Carlos Delgado

Author

Senior Software Engineer at Software Medico. Interested in programming since he was 14 years old, Carlos is a self-taught programmer and founder and author of most of the articles at Our Code World.

	
	

Add Your Comment

Search

Search

Related Articles

Fixing "Specified key was too long error" exception in Laravel 5.4

	March 08, 2018
	8.5K views

How to implement a PHP Debugging Bar in Laravel 5.4

	September 26, 2017
	20.4K views

How to create a PSR-6 file system cache for Guzzle in Laravel 5.4

	September 26, 2017
	7.9K views

How to generate a PDF from html with TCPDF in laravel

	August 12, 2016
	53.5K views

How to render a view and save its html content in a variable in laravel

	August 12, 2016
	55.3K views

Advertising

Advertising

Follow Us

	
	
	
	
	

Advertising

Sponsors

	

	

	

	

	

	

Follow Us

	
	
	
	
	
	

	

Contact us

	

Advertise with us

	

About

All Rights Reserved © 2015 - 2024

